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Traveling time and traveling length in critical percolation clusters
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We study traveling time and traveling length for tracer dispersion in two-dimensional bond percolation,
modeling flow by tracer particles driven by a pressure difference between two points separated by Euclidean
distancer. We find that the minimal traveling timg,;, scales as,;,~r 3 which is different from the scaling

of the most probable traveling timé~r'% We also calculate the length of the path corresponding to the
minimal traveling time and find’,,j,~r**3and that the most probable traveling length scaleg-as'?. We
present the relevant distribution functions and scaling relati@H063-651X99)02809-3

PACS numbgs): 47.55.Mh, 05.60.Cd, 64.60.Ak

The study of flow in porous media has many applicationstraveling time to obtairP(ty;,) and P(/min). We run the

such as hydrocarbon recovery and ground-water pollutiogjmulation for system sizé XL where L=1000>r, and

[1-5]. Here we study an incompressible flow on two- find a well-defined region where the distributions follow the

dimensional bond percolation clust¢f at criticality where  scaling form[12]

fluid is injected at poinA and recovered at poitig separated

from pointA by Euclidean distance At timet=0 we add a

passive tracef7] at the injection poin{8]. We investigate —gy

the scaling properties of the distributions to@veling time, P(X)=A,| — f(i) (1)

traveling length, minimal traveling time, and the length of X* xX*

the path corresponding to the minimal traveling timiethe

tracer particles. We find new dynamical scaling exponents _ _

associated with these distributions. where x denotes/ min, tmin: Z, Or t. The normalization
Our first step is to calculate the pressure difference acrossonstant is given byA,~(x*)~*! and we find the scaling

each bond by solving Kirchhoff's law, which is equivalent to functions to be of the forni(y)=exp(—ay~%). The maxi-

solving the Laplace equation. The velocity across a givermum of the probability is ak*. Simulation shows that*

bond is proportional to the pressure difference acrosbias a power-law dependence on the distance

the bond; we normalize the velocities assuming the total

flow betweenA and B is fixed, independent of the dis-

tance betweerA and B and the realization of the porous x* ~ Oy )

media[9].

We simulate the flow of tracers using a particle-launching

algorithm (PLA) [10], where a tracer particle starting from The exponents, andd, are related byp,= 1/(d,— 1) [13].

the injection poin@A travels through the medium along a path The scaling functiorf decreases sharply whenis smaller

connected to the recovery poiBt[11]. The probabilityp;;  thanx*. The lower cutoff is due to the fact that the traveling
that a tracer particle at nodeselects an outgoing bondj distance cannot be smaller than the distance
is proportional to the velocity of flow on that bong; The path, which takes minimal time, is not always the

=Vij/Zvik, where thek summation should be taken over shortest path. However, we find that the distribution@f ,
all outgoing bonds, i.e., fovy>0. In this process, the time coincides with the distribution of the chemical lengths
taken to pass through the bonigXis inversely proportional petween points separated by distamcstudied in detail in
to the velocity of that bond, i.etj; = 1/iv;; . Ref. [14].

We measure the distributionQ(T) and P(7), of the In Figs. 1a), 2(a), and 3a), we show the log-log plots of

traveling timet and the traveling lengtif betweenA andB  distributionsP (), P(7), andP(t), respectively. For dif-
for 10000 tracer particles for each realization. We samplderent distances =4, 8, 16, 32, 64, and 128, we determine
over 10 000 different realizations with the two poiftsand  the characteristic size* as the peak of the distribution. In
B fixed. For each realization, we also find the minimal trav-Figs. 1b), 2(b), and 3b), we plotx* versus distance in a
eling time and the path, which corresponds to the minimabouble logarithmic scale and linear fitting yields the expo-
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FIG. 1. (a) Log-log plot of the minimal traveling time distribu-
tion P(ty,;,) for separationg =4, 8, 16, 32, 64, and 128 between
injection and recovery pointgb) Log-log plot of the most probable
minimal traveling time versus. A linear fit yields dtmin:1'33
+0.05. (c) The data obtained by rescaling the minimal time with its
characteristic time,;,~r133 A fit of the power-law regime gives
g, =1.90£0.05.

FIG. 2. (a) Log-log plot of traveling distance distributioR(7)
forr=4, 8, 16, 32, 64, and 128b) Log-log plot of the most prob-
able traveling length versus A linear fit yieldsd;=1.21+0.02.

(c) The data obtained by rescaling the traveling length with its
characteristic lengti’™ ~r 2% A fit of the power-law regime gives
g7>=2.0+0.05.

the exponent for the optimal path in random energy land-

nentsd, for each distribution. In Figs.(&), 2(c), and 3c) we scapesfyp=1.2+0.02[16], and the shortest path in inva-

collapse the data by rescalinguy its characteristic size*. sion percolation with trapping, = 1.22+0.01[17].
All distributions are consistent with the Scaling form of Eq In many transport pr0b|ems, the characteristic time scales
(1). The measured values of scaling exponents are summgith the characteristic length with a power latti,~ (/*)2.
rized in Table I. Sincet* scales as% and/* scales as%, it is reasonable

As shown in Fig. &), the most probable traveling length to assume that=d,/d,. Combining this relation, the rela-
7* scales ag’* ~r% whered;=1.21+0.02. Note thatly  tion ty,~/2:, EQ. (1), and the identitiesP(/ min)d/ min
is significantly different from the minimal path exponent =P(t.,;,)dt,i, We obtain scaling relations between expo-
dmin=1.130£0.002[15], while it is within the error bars of nents,
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TABLE I. Results for the exponents. Ode=2 results ford/min
andg, are within error bars ofi,, and g, in Ref. [14]. For
comparison, the theoretical valuesdyf andg, for d=6 are all 2.

X dX gX
S 10 S 1.13+0.01 2.14-0.05
o to 1.33+0.05 1.90-0.05
| 7 1.21+0.02 2.00:0.05
T 1.64+0.02 1.62-0.05
10°
(g/min_ 1)d/min_ (gtmin_ 1)dtmin' (3)
10 This scaling relation is well satisfied by the set of scaling
exponents given in Table I.
Because of flow conservation, the velocity at distance
10° 1 from point A should scale inversely proportional to the num-
(b) ber of bonds at this distance, which scalesrd3% ! where
102 | dg is the fractal dimension of the transport backbone. Then,
- slope=1.64 the traveling time for a particle to travel the distancés
given by
10’ ;
~ rl
10° . . t*(r)~j —dr'~rd%, (4
10° 10' 10° 10° ov(r’)

Note thatt*(r) is the most probable traveling time in our
10° , , system, so we obtain the scaling relatidy=dg . Thus, the
most probable traveling time is characterized by the transport
backbone dimension of the media. This result is consistent
1 with the homogeneous case, whege=2. The most recently
reported value for the fractal dimension of the backbone is
dz=1.6432+0.0008[18] for d=2, which is in agreement
with our results(Table ).

The minimal traveling time is the sum of inverse veloci-
j ties over the fastest path where as noted above the fastest
path is statistically identical to the shortest path. While the
velocity distribution has been studied extensivElg] (e.g.,
it is known to be multifractal because the velocities along
the path are correlated, how the minimum traveling time dis-
tribution is related to the local velocity distribution is an
open challenge for further research.
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FIG. 3. (a) Log-log plot of traveling time distributiodP(t) for
r=4,8, 16, 32, 64, and 128b) Log-log plot of the most probable
time versus. A linear fit yieldsd;=1.64+0.02. (c) The data ob-
tained by rescaling the time with its characteristic titfie-r1%4 A
linear fit of the power-law regime givag=1.62+0.05.
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