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Traveling time and traveling length in critical percolation clusters
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We study traveling time and traveling length for tracer dispersion in two-dimensional bond percolation,
modeling flow by tracer particles driven by a pressure difference between two points separated by Euclidean
distancer. We find that the minimal traveling timetmin scales astmin;r 1.33, which is different from the scaling

of the most probable traveling time,t̃;r 1.64. We also calculate the length of the path corresponding to the

minimal traveling time and findl min;r 1.13 and that the most probable traveling length scales asl̃ ;r 1.21. We
present the relevant distribution functions and scaling relations.@S1063-651X~99!02809-3#

PACS number~s!: 47.55.Mh, 05.60.Cd, 64.60.Ak
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The study of flow in porous media has many applicatio
such as hydrocarbon recovery and ground-water pollu
@1–5#. Here we study an incompressible flow on tw
dimensional bond percolation clusters@6# at criticality where
fluid is injected at pointA and recovered at pointB separated
from pointA by Euclidean distancer. At time t50 we add a
passive tracer@7# at the injection point@8#. We investigate
the scaling properties of the distributions oftraveling time,
traveling length, minimal traveling time, and the length
the path corresponding to the minimal traveling timeof the
tracer particles. We find new dynamical scaling expone
associated with these distributions.

Our first step is to calculate the pressure difference ac
each bond by solving Kirchhoff’s law, which is equivalent
solving the Laplace equation. The velocity across a giv
bond is proportional to the pressure difference acr
the bond; we normalize the velocities assuming the to
flow betweenA and B is fixed, independent of the dis
tance betweenA and B and the realization of the porou
media@9#.

We simulate the flow of tracers using a particle-launch
algorithm ~PLA! @10#, where a tracer particle starting from
the injection pointA travels through the medium along a pa
connected to the recovery pointB @11#. The probabilitypi j
that a tracer particle at nodei selects an outgoing bond (i j )
is proportional to the velocity of flow on that bond;pi j
5v i j /(kv ik , where thek summation should be taken ove
all outgoing bonds, i.e., forv ik.0. In this process, the time
taken to pass through the bond (i j ) is inversely proportional
to the velocity of that bond, i.e.,t i j 51/v i j .

We measure the distributions,P( t̃ ) and P( l̃ ), of the
traveling timet̃ and the traveling lengthl̃ betweenA andB
for 10 000 tracer particles for each realization. We sam
over 10 000 different realizations with the two pointsA and
B fixed. For each realization, we also find the minimal tra
eling time and the path, which corresponds to the minim
PRE 601063-651X/99/60~3!/3425~4!/$15.00
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traveling time to obtainP(tmin) and P(l min). We run the
simulation for system sizeL3L where L51000@r , and
find a well-defined region where the distributions follow th
scaling form@12#

P~x!5AxS x

x*
D 2gx

f S x

x*
D , ~1!

where x denotesl min , tmin , l̃ , or t̃ . The normalization
constant is given byAx;(x* )21 and we find the scaling
functions to be of the formf (y)5exp(2axy

2fx). The maxi-
mum of the probability is atx* . Simulation shows thatx*
has a power-law dependence on the distancer,

x* ;r dx. ~2!

The exponentsfx anddx are related byfx51/(dx21) @13#.
The scaling functionf decreases sharply whenx is smaller
thanx* . The lower cutoff is due to the fact that the travelin
distance cannot be smaller than the distancer.

The path, which takes minimal time, is not always t
shortest path. However, we find that the distribution ofl min
coincides with the distribution of the chemical lengt
between points separated by distancer studied in detail in
Ref. @14#.

In Figs. 1~a!, 2~a!, and 3~a!, we show the log-log plots of
distributionsP(tmin), P( l̃ ), andP( t̃ ), respectively. For dif-
ferent distancesr 54, 8, 16, 32, 64, and 128, we determin
the characteristic sizex* as the peak of the distribution. In
Figs. 1~b!, 2~b!, and 3~b!, we plot x* versus distancer in a
double logarithmic scale and linear fitting yields the exp
3425 © 1999 The American Physical Society
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nentsdx for each distribution. In Figs. 1~c!, 2~c!, and 3~c! we
collapse the data by rescalingx by its characteristic sizex* .
All distributions are consistent with the scaling form of E
~1!. The measured values of scaling exponents are sum
rized in Table I.

As shown in Fig. 2~b!, the most probable traveling lengt
l̃ * scales asl̃ * ;r dl̃ wheredl̃ 51.2160.02. Note thatdl̃

is significantly different from the minimal path expone
dmin51.13060.002@15#, while it is within the error bars of

FIG. 1. ~a! Log-log plot of the minimal traveling time distribu
tion P(tmin) for separationsr 54, 8, 16, 32, 64, and 128 betwee
injection and recovery points.~b! Log-log plot of the most probable
minimal traveling time versusr. A linear fit yields dtmin

51.33
60.05. ~c! The data obtained by rescaling the minimal time with
characteristic timetmin* ;r 1.33. A fit of the power-law regime gives
gtmin

51.9060.05.
a-

the exponent for the optimal path in random energy la
scapes,dopt51.260.02 @16#, and the shortest path in inva
sion percolation with trapping,dopt51.2260.01 @17#.

In many transport problems, the characteristic time sca
with the characteristic length with a power law,t* ;(l * )z.
Sincet* scales asr dt and l * scales asr dl , it is reasonable
to assume thatz5dt /dl . Combining this relation, the rela
tion tmin;l min

z , Eq. ~1!, and the identitiesP(l min)dl min

5P(tmin)dtmin we obtain scaling relations between exp
nents,

FIG. 2. ~a! Log-log plot of traveling distance distributionP( l̃ )
for r 54, 8, 16, 32, 64, and 128.~b! Log-log plot of the most prob-
able traveling length versusr. A linear fit yields dl̃ 51.2160.02.
~c! The data obtained by rescaling the traveling length with

characteristic lengthl̃ * ;r 1.21. A fit of the power-law regime gives
gl̃ 52.060.05.
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FIG. 3. ~a! Log-log plot of traveling time distributionP( t̃ ) for
r 54, 8, 16, 32, 64, and 128.~b! Log-log plot of the most probable
time versusr. A linear fit yieldsdt̃51.6460.02. ~c! The data ob-

tained by rescaling the time with its characteristic timet̃ * ;r 1.64. A
linear fit of the power-law regime givesgt̃51.6260.05.
lin

n,
~gl min
21!dl min

5~gtmin
21!dtmin

, ~3!

This scaling relation is well satisfied by the set of scali
exponents given in Table I.

Because of flow conservation, the velocity at distancer 8
from pointA should scale inversely proportional to the num
ber of bonds at this distance, which scales as (r 8)dB21 where
dB is the fractal dimension of the transport backbone. Th
the traveling time for a particle to travel the distancer is
given by

t̃ * ~r !;E
0

r 1

v~r 8!
dr8;r dB. ~4!

Note that t̃ * (r ) is the most probable traveling time in ou
system, so we obtain the scaling relationdt̃5dB . Thus, the
most probable traveling time is characterized by the trans
backbone dimension of the media. This result is consis
with the homogeneous case, wheredB52. The most recently
reported value for the fractal dimension of the backbone
dB51.643260.0008 @18# for d52, which is in agreemen
with our results~Table I!.

The minimal traveling time is the sum of inverse veloc
ties over the fastest path where as noted above the fa
path is statistically identical to the shortest path. While t
velocity distribution has been studied extensively@19# ~e.g.,
it is known to be multifractal!, because the velocities alon
the path are correlated, how the minimum traveling time d
tribution is related to the local velocity distribution is a
open challenge for further research.

We thank A. Coniglio, D. Stauffer, and especially M. Ba
thélémy for fruitful discussions, and BP Amoco for financia
support. We also thank J. Koplik and S. Redner for disc
sions concerning the limitation of a PLA.

TABLE I. Results for the exponents. Ourd52 results fordl min

and gl min
are within error bars ofdmin and gl8 in Ref. @14#. For

comparison, the theoretical values ofdx andgx for d56 are all 2.

x dx gx

l min 1.1360.01 2.1460.05
tmin 1.3360.05 1.9060.05

l̃ 1.2160.02 2.0060.05

t̃ 1.6460.02 1.6260.05
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